Visualization Library 2.0.0-b5

A lightweight C++ OpenGL middleware for 2D/3D graphics

VL     Star     Watch     Fork     Issue

[Download] [Tutorials] [All Classes] [Grouped Classes]
ftgrays.c
Go to the documentation of this file.
1 /***************************************************************************/
2 /* */
3 /* ftgrays.c */
4 /* */
5 /* A new `perfect' anti-aliasing renderer (body). */
6 /* */
7 /* Copyright 2000-2003, 2005-2013 by */
8 /* David Turner, Robert Wilhelm, and Werner Lemberg. */
9 /* */
10 /* This file is part of the FreeType project, and may only be used, */
11 /* modified, and distributed under the terms of the FreeType project */
12 /* license, LICENSE.TXT. By continuing to use, modify, or distribute */
13 /* this file you indicate that you have read the license and */
14 /* understand and accept it fully. */
15 /* */
16 /***************************************************************************/
17 
18  /*************************************************************************/
19  /* */
20  /* This file can be compiled without the rest of the FreeType engine, by */
21  /* defining the _STANDALONE_ macro when compiling it. You also need to */
22  /* put the files `ftgrays.h' and `ftimage.h' into the current */
23  /* compilation directory. Typically, you could do something like */
24  /* */
25  /* - copy `src/smooth/ftgrays.c' (this file) to your current directory */
26  /* */
27  /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
28  /* same directory */
29  /* */
30  /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */
31  /* */
32  /* cc -c -D_STANDALONE_ ftgrays.c */
33  /* */
34  /* The renderer can be initialized with a call to */
35  /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */
36  /* with a call to `ft_gray_raster.raster_render'. */
37  /* */
38  /* See the comments and documentation in the file `ftimage.h' for more */
39  /* details on how the raster works. */
40  /* */
41  /*************************************************************************/
42 
43  /*************************************************************************/
44  /* */
45  /* This is a new anti-aliasing scan-converter for FreeType 2. The */
46  /* algorithm used here is _very_ different from the one in the standard */
47  /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */
48  /* coverage of the outline on each pixel cell. */
49  /* */
50  /* It is based on ideas that I initially found in Raph Levien's */
51  /* excellent LibArt graphics library (see http://www.levien.com/libart */
52  /* for more information, though the web pages do not tell anything */
53  /* about the renderer; you'll have to dive into the source code to */
54  /* understand how it works). */
55  /* */
56  /* Note, however, that this is a _very_ different implementation */
57  /* compared to Raph's. Coverage information is stored in a very */
58  /* different way, and I don't use sorted vector paths. Also, it doesn't */
59  /* use floating point values. */
60  /* */
61  /* This renderer has the following advantages: */
62  /* */
63  /* - It doesn't need an intermediate bitmap. Instead, one can supply a */
64  /* callback function that will be called by the renderer to draw gray */
65  /* spans on any target surface. You can thus do direct composition on */
66  /* any kind of bitmap, provided that you give the renderer the right */
67  /* callback. */
68  /* */
69  /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */
70  /* each pixel cell. */
71  /* */
72  /* - It performs a single pass on the outline (the `standard' FT2 */
73  /* renderer makes two passes). */
74  /* */
75  /* - It can easily be modified to render to _any_ number of gray levels */
76  /* cheaply. */
77  /* */
78  /* - For small (< 20) pixel sizes, it is faster than the standard */
79  /* renderer. */
80  /* */
81  /*************************************************************************/
82 
83 
84  /*************************************************************************/
85  /* */
86  /* The macro FT_COMPONENT is used in trace mode. It is an implicit */
87  /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
88  /* messages during execution. */
89  /* */
90 #undef FT_COMPONENT
91 #define FT_COMPONENT trace_smooth
92 
93 
94 #ifdef _STANDALONE_
95 
96 
97  /* Auxiliary macros for token concatenation. */
98 #define FT_ERR_XCAT( x, y ) x ## y
99 #define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y )
100 
101 
102  /* define this to dump debugging information */
103 /* #define FT_DEBUG_LEVEL_TRACE */
104 
105 
106 #ifdef FT_DEBUG_LEVEL_TRACE
107 #include <stdio.h>
108 #include <stdarg.h>
109 #endif
110 
111 #include <stddef.h>
112 #include <string.h>
113 #include <setjmp.h>
114 #include <limits.h>
115 #define FT_UINT_MAX UINT_MAX
116 #define FT_INT_MAX INT_MAX
117 
118 #define ft_memset memset
119 
120 #define ft_setjmp setjmp
121 #define ft_longjmp longjmp
122 #define ft_jmp_buf jmp_buf
123 
124 typedef ptrdiff_t FT_PtrDist;
125 
126 
127 #define ErrRaster_Invalid_Mode -2
128 #define ErrRaster_Invalid_Outline -1
129 #define ErrRaster_Invalid_Argument -3
130 #define ErrRaster_Memory_Overflow -4
131 
132 #define FT_BEGIN_HEADER
133 #define FT_END_HEADER
134 
135 #include "ftimage.h"
136 #include "ftgrays.h"
137 
138 
139  /* This macro is used to indicate that a function parameter is unused. */
140  /* Its purpose is simply to reduce compiler warnings. Note also that */
141  /* simply defining it as `(void)x' doesn't avoid warnings with certain */
142  /* ANSI compilers (e.g. LCC). */
143 #define FT_UNUSED( x ) (x) = (x)
144 
145 
146  /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
147 
148 #ifdef FT_DEBUG_LEVEL_TRACE
149 
150  void
151  FT_Message( const char* fmt,
152  ... )
153  {
154  va_list ap;
155 
156 
157  va_start( ap, fmt );
158  vfprintf( stderr, fmt, ap );
159  va_end( ap );
160  }
161 
162 
163  /* empty function useful for setting a breakpoint to catch errors */
164  int
165  FT_Throw( int error,
166  int line,
167  const char* file )
168  {
169  FT_UNUSED( error );
170  FT_UNUSED( line );
171  FT_UNUSED( file );
172 
173  return 0;
174  }
175 
176 
177  /* we don't handle tracing levels in stand-alone mode; */
178 #ifndef FT_TRACE5
179 #define FT_TRACE5( varformat ) FT_Message varformat
180 #endif
181 #ifndef FT_TRACE7
182 #define FT_TRACE7( varformat ) FT_Message varformat
183 #endif
184 #ifndef FT_ERROR
185 #define FT_ERROR( varformat ) FT_Message varformat
186 #endif
187 
188 #define FT_THROW( e ) \
189  ( FT_Throw( FT_ERR_CAT( ErrRaster, e ), \
190  __LINE__, \
191  __FILE__ ) | \
192  FT_ERR_CAT( ErrRaster, e ) )
193 
194 #else /* !FT_DEBUG_LEVEL_TRACE */
195 
196 #define FT_TRACE5( x ) do { } while ( 0 ) /* nothing */
197 #define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */
198 #define FT_ERROR( x ) do { } while ( 0 ) /* nothing */
199 #define FT_THROW( e ) FT_ERR_CAT( ErrRaster_, e )
200 
201 
202 #endif /* !FT_DEBUG_LEVEL_TRACE */
203 
204 
205 #define FT_DEFINE_OUTLINE_FUNCS( class_, \
206  move_to_, line_to_, \
207  conic_to_, cubic_to_, \
208  shift_, delta_ ) \
209  static const FT_Outline_Funcs class_ = \
210  { \
211  move_to_, \
212  line_to_, \
213  conic_to_, \
214  cubic_to_, \
215  shift_, \
216  delta_ \
217  };
218 
219 #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, \
220  raster_new_, raster_reset_, \
221  raster_set_mode_, raster_render_, \
222  raster_done_ ) \
223  const FT_Raster_Funcs class_ = \
224  { \
225  glyph_format_, \
226  raster_new_, \
227  raster_reset_, \
228  raster_set_mode_, \
229  raster_render_, \
230  raster_done_ \
231  };
232 
233 
234 #else /* !_STANDALONE_ */
235 
236 
237 #include <ft2build.h>
238 #include "ftgrays.h"
239 #include FT_INTERNAL_OBJECTS_H
240 #include FT_INTERNAL_DEBUG_H
241 #include FT_OUTLINE_H
242 
243 #include "ftsmerrs.h"
244 
245 #include "ftspic.h"
246 
247 #define Smooth_Err_Invalid_Mode Smooth_Err_Cannot_Render_Glyph
248 #define Smooth_Err_Memory_Overflow Smooth_Err_Out_Of_Memory
249 #define ErrRaster_Memory_Overflow Smooth_Err_Out_Of_Memory
250 
251 
252 #endif /* !_STANDALONE_ */
253 
254 
255 #ifndef FT_MEM_SET
256 #define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
257 #endif
258 
259 #ifndef FT_MEM_ZERO
260 #define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
261 #endif
262 
263  /* as usual, for the speed hungry :-) */
264 
265 #undef RAS_ARG
266 #undef RAS_ARG_
267 #undef RAS_VAR
268 #undef RAS_VAR_
269 
270 #ifndef FT_STATIC_RASTER
271 
272 #define RAS_ARG gray_PWorker worker
273 #define RAS_ARG_ gray_PWorker worker,
274 
275 #define RAS_VAR worker
276 #define RAS_VAR_ worker,
277 
278 #else /* FT_STATIC_RASTER */
279 
280 #define RAS_ARG /* empty */
281 #define RAS_ARG_ /* empty */
282 #define RAS_VAR /* empty */
283 #define RAS_VAR_ /* empty */
284 
285 #endif /* FT_STATIC_RASTER */
286 
287 
288  /* must be at least 6 bits! */
289 #define PIXEL_BITS 8
290 
291 #undef FLOOR
292 #undef CEILING
293 #undef TRUNC
294 #undef SCALED
295 
296 #define ONE_PIXEL ( 1L << PIXEL_BITS )
297 #define PIXEL_MASK ( -1L << PIXEL_BITS )
298 #define TRUNC( x ) ( (TCoord)( (x) >> PIXEL_BITS ) )
299 #define SUBPIXELS( x ) ( (TPos)(x) << PIXEL_BITS )
300 #define FLOOR( x ) ( (x) & -ONE_PIXEL )
301 #define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
302 #define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
303 
304 #if PIXEL_BITS >= 6
305 #define UPSCALE( x ) ( (x) << ( PIXEL_BITS - 6 ) )
306 #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) )
307 #else
308 #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) )
309 #define DOWNSCALE( x ) ( (x) << ( 6 - PIXEL_BITS ) )
310 #endif
311 
312 
313  /*************************************************************************/
314  /* */
315  /* TYPE DEFINITIONS */
316  /* */
317 
318  /* don't change the following types to FT_Int or FT_Pos, since we might */
319  /* need to define them to "float" or "double" when experimenting with */
320  /* new algorithms */
321 
322  typedef long TCoord; /* integer scanline/pixel coordinate */
323  typedef long TPos; /* sub-pixel coordinate */
324 
325  /* determine the type used to store cell areas. This normally takes at */
326  /* least PIXEL_BITS*2 + 1 bits. On 16-bit systems, we need to use */
327  /* `long' instead of `int', otherwise bad things happen */
328 
329 #if PIXEL_BITS <= 7
330 
331  typedef int TArea;
332 
333 #else /* PIXEL_BITS >= 8 */
334 
335  /* approximately determine the size of integers using an ANSI-C header */
336 #if FT_UINT_MAX == 0xFFFFU
337  typedef long TArea;
338 #else
339  typedef int TArea;
340 #endif
341 
342 #endif /* PIXEL_BITS >= 8 */
343 
344 
345  /* maximum number of gray spans in a call to the span callback */
346 #define FT_MAX_GRAY_SPANS 32
347 
348 
349  typedef struct TCell_* PCell;
350 
351  typedef struct TCell_
352  {
353  TPos x; /* same with gray_TWorker.ex */
354  TCoord cover; /* same with gray_TWorker.cover */
355  TArea area;
356  PCell next;
357 
358  } TCell;
359 
360 
361  typedef struct gray_TWorker_
362  {
363  TCoord ex, ey;
364  TPos min_ex, max_ex;
365  TPos min_ey, max_ey;
366  TPos count_ex, count_ey;
367 
368  TArea area;
369  TCoord cover;
370  int invalid;
371 
372  PCell cells;
373  FT_PtrDist max_cells;
374  FT_PtrDist num_cells;
375 
376  TCoord cx, cy;
377  TPos x, y;
378 
379  TPos last_ey;
380 
381  FT_Vector bez_stack[32 * 3 + 1];
382  int lev_stack[32];
383 
384  FT_Outline outline;
386  FT_BBox clip_box;
387 
388  FT_Span gray_spans[FT_MAX_GRAY_SPANS];
389  int num_gray_spans;
390 
391  FT_Raster_Span_Func render_span;
392  void* render_span_data;
393  int span_y;
394 
395  int band_size;
396  int band_shoot;
397 
398  ft_jmp_buf jump_buffer;
399 
400  void* buffer;
401  long buffer_size;
402 
403  PCell* ycells;
404  TPos ycount;
405 
407 
408 
409 #ifndef FT_STATIC_RASTER
410 #define ras (*worker)
411 #else
412  static gray_TWorker ras;
413 #endif
414 
415 
416  typedef struct gray_TRaster_
417  {
418  void* buffer;
419  long buffer_size;
420  int band_size;
421  void* memory;
422  gray_PWorker worker;
423 
425 
426 
427 
428  /*************************************************************************/
429  /* */
430  /* Initialize the cells table. */
431  /* */
432  static void
433  gray_init_cells( RAS_ARG_ void* buffer,
434  long byte_size )
435  {
436  ras.buffer = buffer;
437  ras.buffer_size = byte_size;
438 
439  ras.ycells = (PCell*) buffer;
440  ras.cells = NULL;
441  ras.max_cells = 0;
442  ras.num_cells = 0;
443  ras.area = 0;
444  ras.cover = 0;
445  ras.invalid = 1;
446  }
447 
448 
449  /*************************************************************************/
450  /* */
451  /* Compute the outline bounding box. */
452  /* */
453  static void
454  gray_compute_cbox( RAS_ARG )
455  {
456  FT_Outline* outline = &ras.outline;
457  FT_Vector* vec = outline->points;
458  FT_Vector* limit = vec + outline->n_points;
459 
460 
461  if ( outline->n_points <= 0 )
462  {
463  ras.min_ex = ras.max_ex = 0;
464  ras.min_ey = ras.max_ey = 0;
465  return;
466  }
467 
468  ras.min_ex = ras.max_ex = vec->x;
469  ras.min_ey = ras.max_ey = vec->y;
470 
471  vec++;
472 
473  for ( ; vec < limit; vec++ )
474  {
475  TPos x = vec->x;
476  TPos y = vec->y;
477 
478 
479  if ( x < ras.min_ex ) ras.min_ex = x;
480  if ( x > ras.max_ex ) ras.max_ex = x;
481  if ( y < ras.min_ey ) ras.min_ey = y;
482  if ( y > ras.max_ey ) ras.max_ey = y;
483  }
484 
485  /* truncate the bounding box to integer pixels */
486  ras.min_ex = ras.min_ex >> 6;
487  ras.min_ey = ras.min_ey >> 6;
488  ras.max_ex = ( ras.max_ex + 63 ) >> 6;
489  ras.max_ey = ( ras.max_ey + 63 ) >> 6;
490  }
491 
492 
493  /*************************************************************************/
494  /* */
495  /* Record the current cell in the table. */
496  /* */
497  static PCell
498  gray_find_cell( RAS_ARG )
499  {
500  PCell *pcell, cell;
501  TPos x = ras.ex;
502 
503 
504  if ( x > ras.count_ex )
505  x = ras.count_ex;
506 
507  pcell = &ras.ycells[ras.ey];
508  for (;;)
509  {
510  cell = *pcell;
511  if ( cell == NULL || cell->x > x )
512  break;
513 
514  if ( cell->x == x )
515  goto Exit;
516 
517  pcell = &cell->next;
518  }
519 
520  if ( ras.num_cells >= ras.max_cells )
521  ft_longjmp( ras.jump_buffer, 1 );
522 
523  cell = ras.cells + ras.num_cells++;
524  cell->x = x;
525  cell->area = 0;
526  cell->cover = 0;
527 
528  cell->next = *pcell;
529  *pcell = cell;
530 
531  Exit:
532  return cell;
533  }
534 
535 
536  static void
537  gray_record_cell( RAS_ARG )
538  {
539  if ( !ras.invalid && ( ras.area | ras.cover ) )
540  {
541  PCell cell = gray_find_cell( RAS_VAR );
542 
543 
544  cell->area += ras.area;
545  cell->cover += ras.cover;
546  }
547  }
548 
549 
550  /*************************************************************************/
551  /* */
552  /* Set the current cell to a new position. */
553  /* */
554  static void
555  gray_set_cell( RAS_ARG_ TCoord ex,
556  TCoord ey )
557  {
558  /* Move the cell pointer to a new position. We set the `invalid' */
559  /* flag to indicate that the cell isn't part of those we're interested */
560  /* in during the render phase. This means that: */
561  /* */
562  /* . the new vertical position must be within min_ey..max_ey-1. */
563  /* . the new horizontal position must be strictly less than max_ex */
564  /* */
565  /* Note that if a cell is to the left of the clipping region, it is */
566  /* actually set to the (min_ex-1) horizontal position. */
567 
568  /* All cells that are on the left of the clipping region go to the */
569  /* min_ex - 1 horizontal position. */
570  ey -= ras.min_ey;
571 
572  if ( ex > ras.max_ex )
573  ex = ras.max_ex;
574 
575  ex -= ras.min_ex;
576  if ( ex < 0 )
577  ex = -1;
578 
579  /* are we moving to a different cell ? */
580  if ( ex != ras.ex || ey != ras.ey )
581  {
582  /* record the current one if it is valid */
583  if ( !ras.invalid )
584  gray_record_cell( RAS_VAR );
585 
586  ras.area = 0;
587  ras.cover = 0;
588  }
589 
590  ras.ex = ex;
591  ras.ey = ey;
592  ras.invalid = ( (unsigned)ey >= (unsigned)ras.count_ey ||
593  ex >= ras.count_ex );
594  }
595 
596 
597  /*************************************************************************/
598  /* */
599  /* Start a new contour at a given cell. */
600  /* */
601  static void
602  gray_start_cell( RAS_ARG_ TCoord ex,
603  TCoord ey )
604  {
605  if ( ex > ras.max_ex )
606  ex = (TCoord)( ras.max_ex );
607 
608  if ( ex < ras.min_ex )
609  ex = (TCoord)( ras.min_ex - 1 );
610 
611  ras.area = 0;
612  ras.cover = 0;
613  ras.ex = ex - ras.min_ex;
614  ras.ey = ey - ras.min_ey;
615  ras.last_ey = SUBPIXELS( ey );
616  ras.invalid = 0;
617 
618  gray_set_cell( RAS_VAR_ ex, ey );
619  }
620 
621 
622  /*************************************************************************/
623  /* */
624  /* Render a scanline as one or more cells. */
625  /* */
626  static void
627  gray_render_scanline( RAS_ARG_ TCoord ey,
628  TPos x1,
629  TCoord y1,
630  TPos x2,
631  TCoord y2 )
632  {
633  TCoord ex1, ex2, fx1, fx2, delta, mod, lift, rem;
634  long p, first, dx;
635  int incr;
636 
637 
638  dx = x2 - x1;
639 
640  ex1 = TRUNC( x1 );
641  ex2 = TRUNC( x2 );
642  fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
643  fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
644 
645  /* trivial case. Happens often */
646  if ( y1 == y2 )
647  {
648  gray_set_cell( RAS_VAR_ ex2, ey );
649  return;
650  }
651 
652  /* everything is located in a single cell. That is easy! */
653  /* */
654  if ( ex1 == ex2 )
655  {
656  delta = y2 - y1;
657  ras.area += (TArea)(( fx1 + fx2 ) * delta);
658  ras.cover += delta;
659  return;
660  }
661 
662  /* ok, we'll have to render a run of adjacent cells on the same */
663  /* scanline... */
664  /* */
665  p = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
666  first = ONE_PIXEL;
667  incr = 1;
668 
669  if ( dx < 0 )
670  {
671  p = fx1 * ( y2 - y1 );
672  first = 0;
673  incr = -1;
674  dx = -dx;
675  }
676 
677  delta = (TCoord)( p / dx );
678  mod = (TCoord)( p % dx );
679  if ( mod < 0 )
680  {
681  delta--;
682  mod += (TCoord)dx;
683  }
684 
685  ras.area += (TArea)(( fx1 + first ) * delta);
686  ras.cover += delta;
687 
688  ex1 += incr;
689  gray_set_cell( RAS_VAR_ ex1, ey );
690  y1 += delta;
691 
692  if ( ex1 != ex2 )
693  {
694  p = ONE_PIXEL * ( y2 - y1 + delta );
695  lift = (TCoord)( p / dx );
696  rem = (TCoord)( p % dx );
697  if ( rem < 0 )
698  {
699  lift--;
700  rem += (TCoord)dx;
701  }
702 
703  mod -= (int)dx;
704 
705  while ( ex1 != ex2 )
706  {
707  delta = lift;
708  mod += rem;
709  if ( mod >= 0 )
710  {
711  mod -= (TCoord)dx;
712  delta++;
713  }
714 
715  ras.area += (TArea)(ONE_PIXEL * delta);
716  ras.cover += delta;
717  y1 += delta;
718  ex1 += incr;
719  gray_set_cell( RAS_VAR_ ex1, ey );
720  }
721  }
722 
723  delta = y2 - y1;
724  ras.area += (TArea)(( fx2 + ONE_PIXEL - first ) * delta);
725  ras.cover += delta;
726  }
727 
728 
729  /*************************************************************************/
730  /* */
731  /* Render a given line as a series of scanlines. */
732  /* */
733  static void
734  gray_render_line( RAS_ARG_ TPos to_x,
735  TPos to_y )
736  {
737  TCoord ey1, ey2, fy1, fy2, mod;
738  TPos dx, dy, x, x2;
739  long p, first;
740  int delta, rem, lift, incr;
741 
742 
743  ey1 = TRUNC( ras.last_ey );
744  ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
745  fy1 = (TCoord)( ras.y - ras.last_ey );
746  fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
747 
748  dx = to_x - ras.x;
749  dy = to_y - ras.y;
750 
751  /* XXX: we should do something about the trivial case where dx == 0, */
752  /* as it happens very often! */
753 
754  /* perform vertical clipping */
755  {
756  TCoord min, max;
757 
758 
759  min = ey1;
760  max = ey2;
761  if ( ey1 > ey2 )
762  {
763  min = ey2;
764  max = ey1;
765  }
766  if ( min >= ras.max_ey || max < ras.min_ey )
767  goto End;
768  }
769 
770  /* everything is on a single scanline */
771  if ( ey1 == ey2 )
772  {
773  gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
774  goto End;
775  }
776 
777  /* vertical line - avoid calling gray_render_scanline */
778  incr = 1;
779 
780  if ( dx == 0 )
781  {
782  TCoord ex = TRUNC( ras.x );
783  TCoord two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
784  TArea area;
785 
786 
787  first = ONE_PIXEL;
788  if ( dy < 0 )
789  {
790  first = 0;
791  incr = -1;
792  }
793 
794  delta = (int)( first - fy1 );
795  ras.area += (TArea)two_fx * delta;
796  ras.cover += delta;
797  ey1 += incr;
798 
799  gray_set_cell( RAS_VAR_ ex, ey1 );
800 
801  delta = (int)( first + first - ONE_PIXEL );
802  area = (TArea)two_fx * delta;
803  while ( ey1 != ey2 )
804  {
805  ras.area += area;
806  ras.cover += delta;
807  ey1 += incr;
808 
809  gray_set_cell( RAS_VAR_ ex, ey1 );
810  }
811 
812  delta = (int)( fy2 - ONE_PIXEL + first );
813  ras.area += (TArea)two_fx * delta;
814  ras.cover += delta;
815 
816  goto End;
817  }
818 
819  /* ok, we have to render several scanlines */
820  p = ( ONE_PIXEL - fy1 ) * dx;
821  first = ONE_PIXEL;
822  incr = 1;
823 
824  if ( dy < 0 )
825  {
826  p = fy1 * dx;
827  first = 0;
828  incr = -1;
829  dy = -dy;
830  }
831 
832  delta = (int)( p / dy );
833  mod = (int)( p % dy );
834  if ( mod < 0 )
835  {
836  delta--;
837  mod += (TCoord)dy;
838  }
839 
840  x = ras.x + delta;
841  gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
842 
843  ey1 += incr;
844  gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
845 
846  if ( ey1 != ey2 )
847  {
848  p = ONE_PIXEL * dx;
849  lift = (int)( p / dy );
850  rem = (int)( p % dy );
851  if ( rem < 0 )
852  {
853  lift--;
854  rem += (int)dy;
855  }
856  mod -= (int)dy;
857 
858  while ( ey1 != ey2 )
859  {
860  delta = lift;
861  mod += rem;
862  if ( mod >= 0 )
863  {
864  mod -= (int)dy;
865  delta++;
866  }
867 
868  x2 = x + delta;
869  gray_render_scanline( RAS_VAR_ ey1, x,
870  (TCoord)( ONE_PIXEL - first ), x2,
871  (TCoord)first );
872  x = x2;
873 
874  ey1 += incr;
875  gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
876  }
877  }
878 
879  gray_render_scanline( RAS_VAR_ ey1, x,
880  (TCoord)( ONE_PIXEL - first ), to_x,
881  fy2 );
882 
883  End:
884  ras.x = to_x;
885  ras.y = to_y;
886  ras.last_ey = SUBPIXELS( ey2 );
887  }
888 
889 
890  static void
891  gray_split_conic( FT_Vector* base )
892  {
893  TPos a, b;
894 
895 
896  base[4].x = base[2].x;
897  b = base[1].x;
898  a = base[3].x = ( base[2].x + b ) / 2;
899  b = base[1].x = ( base[0].x + b ) / 2;
900  base[2].x = ( a + b ) / 2;
901 
902  base[4].y = base[2].y;
903  b = base[1].y;
904  a = base[3].y = ( base[2].y + b ) / 2;
905  b = base[1].y = ( base[0].y + b ) / 2;
906  base[2].y = ( a + b ) / 2;
907  }
908 
909 
910  static void
911  gray_render_conic( RAS_ARG_ const FT_Vector* control,
912  const FT_Vector* to )
913  {
914  TPos dx, dy;
915  TPos min, max, y;
916  int top, level;
917  int* levels;
918  FT_Vector* arc;
919 
920 
921  levels = ras.lev_stack;
922 
923  arc = ras.bez_stack;
924  arc[0].x = UPSCALE( to->x );
925  arc[0].y = UPSCALE( to->y );
926  arc[1].x = UPSCALE( control->x );
927  arc[1].y = UPSCALE( control->y );
928  arc[2].x = ras.x;
929  arc[2].y = ras.y;
930  top = 0;
931 
932  dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
933  dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
934  if ( dx < dy )
935  dx = dy;
936 
937  if ( dx < ONE_PIXEL / 4 )
938  goto Draw;
939 
940  /* short-cut the arc that crosses the current band */
941  min = max = arc[0].y;
942 
943  y = arc[1].y;
944  if ( y < min ) min = y;
945  if ( y > max ) max = y;
946 
947  y = arc[2].y;
948  if ( y < min ) min = y;
949  if ( y > max ) max = y;
950 
951  if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
952  goto Draw;
953 
954  level = 0;
955  do
956  {
957  dx >>= 2;
958  level++;
959  } while ( dx > ONE_PIXEL / 4 );
960 
961  levels[0] = level;
962 
963  do
964  {
965  level = levels[top];
966  if ( level > 0 )
967  {
968  gray_split_conic( arc );
969  arc += 2;
970  top++;
971  levels[top] = levels[top - 1] = level - 1;
972  continue;
973  }
974 
975  Draw:
976  gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
977  top--;
978  arc -= 2;
979 
980  } while ( top >= 0 );
981  }
982 
983 
984  static void
985  gray_split_cubic( FT_Vector* base )
986  {
987  TPos a, b, c, d;
988 
989 
990  base[6].x = base[3].x;
991  c = base[1].x;
992  d = base[2].x;
993  base[1].x = a = ( base[0].x + c ) / 2;
994  base[5].x = b = ( base[3].x + d ) / 2;
995  c = ( c + d ) / 2;
996  base[2].x = a = ( a + c ) / 2;
997  base[4].x = b = ( b + c ) / 2;
998  base[3].x = ( a + b ) / 2;
999 
1000  base[6].y = base[3].y;
1001  c = base[1].y;
1002  d = base[2].y;
1003  base[1].y = a = ( base[0].y + c ) / 2;
1004  base[5].y = b = ( base[3].y + d ) / 2;
1005  c = ( c + d ) / 2;
1006  base[2].y = a = ( a + c ) / 2;
1007  base[4].y = b = ( b + c ) / 2;
1008  base[3].y = ( a + b ) / 2;
1009  }
1010 
1011 
1012  static void
1013  gray_render_cubic( RAS_ARG_ const FT_Vector* control1,
1014  const FT_Vector* control2,
1015  const FT_Vector* to )
1016  {
1017  FT_Vector* arc;
1018  TPos min, max, y;
1019 
1020 
1021  arc = ras.bez_stack;
1022  arc[0].x = UPSCALE( to->x );
1023  arc[0].y = UPSCALE( to->y );
1024  arc[1].x = UPSCALE( control2->x );
1025  arc[1].y = UPSCALE( control2->y );
1026  arc[2].x = UPSCALE( control1->x );
1027  arc[2].y = UPSCALE( control1->y );
1028  arc[3].x = ras.x;
1029  arc[3].y = ras.y;
1030 
1031  /* Short-cut the arc that crosses the current band. */
1032  min = max = arc[0].y;
1033 
1034  y = arc[1].y;
1035  if ( y < min )
1036  min = y;
1037  if ( y > max )
1038  max = y;
1039 
1040  y = arc[2].y;
1041  if ( y < min )
1042  min = y;
1043  if ( y > max )
1044  max = y;
1045 
1046  y = arc[3].y;
1047  if ( y < min )
1048  min = y;
1049  if ( y > max )
1050  max = y;
1051 
1052  if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
1053  goto Draw;
1054 
1055  for (;;)
1056  {
1057  /* Decide whether to split or draw. See `Rapid Termination */
1058  /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
1059  /* F. Hain, at */
1060  /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
1061 
1062  {
1063  TPos dx, dy, dx_, dy_;
1064  TPos dx1, dy1, dx2, dy2;
1065  TPos L, s, s_limit;
1066 
1067 
1068  /* dx and dy are x and y components of the P0-P3 chord vector. */
1069  dx = arc[3].x - arc[0].x;
1070  dy = arc[3].y - arc[0].y;
1071 
1072  /* L is an (under)estimate of the Euclidean distance P0-P3. */
1073  /* */
1074  /* If dx >= dy, then r = sqrt(dx^2 + dy^2) can be overestimated */
1075  /* with least maximum error by */
1076  /* */
1077  /* r_upperbound = dx + (sqrt(2) - 1) * dy , */
1078  /* */
1079  /* where sqrt(2) - 1 can be (over)estimated by 107/256, giving an */
1080  /* error of no more than 8.4%. */
1081  /* */
1082  /* Similarly, some elementary calculus shows that r can be */
1083  /* underestimated with least maximum error by */
1084  /* */
1085  /* r_lowerbound = sqrt(2 + sqrt(2)) / 2 * dx */
1086  /* + sqrt(2 - sqrt(2)) / 2 * dy . */
1087  /* */
1088  /* 236/256 and 97/256 are (under)estimates of the two algebraic */
1089  /* numbers, giving an error of no more than 8.1%. */
1090 
1091  dx_ = FT_ABS( dx );
1092  dy_ = FT_ABS( dy );
1093 
1094  /* This is the same as */
1095  /* */
1096  /* L = ( 236 * FT_MAX( dx_, dy_ ) */
1097  /* + 97 * FT_MIN( dx_, dy_ ) ) >> 8; */
1098  L = ( dx_ > dy_ ? 236 * dx_ + 97 * dy_
1099  : 97 * dx_ + 236 * dy_ ) >> 8;
1100 
1101  /* Avoid possible arithmetic overflow below by splitting. */
1102  if ( L > 32767 )
1103  goto Split;
1104 
1105  /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
1106  s_limit = L * (TPos)( ONE_PIXEL / 6 );
1107 
1108  /* s is L * the perpendicular distance from P1 to the line P0-P3. */
1109  dx1 = arc[1].x - arc[0].x;
1110  dy1 = arc[1].y - arc[0].y;
1111  s = FT_ABS( dy * dx1 - dx * dy1 );
1112 
1113  if ( s > s_limit )
1114  goto Split;
1115 
1116  /* s is L * the perpendicular distance from P2 to the line P0-P3. */
1117  dx2 = arc[2].x - arc[0].x;
1118  dy2 = arc[2].y - arc[0].y;
1119  s = FT_ABS( dy * dx2 - dx * dy2 );
1120 
1121  if ( s > s_limit )
1122  goto Split;
1123 
1124  /* Split super curvy segments where the off points are so far
1125  from the chord that the angles P0-P1-P3 or P0-P2-P3 become
1126  acute as detected by appropriate dot products. */
1127  if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
1128  dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
1129  goto Split;
1130 
1131  /* No reason to split. */
1132  goto Draw;
1133  }
1134 
1135  Split:
1136  gray_split_cubic( arc );
1137  arc += 3;
1138  continue;
1139 
1140  Draw:
1141  gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
1142 
1143  if ( arc == ras.bez_stack )
1144  return;
1145 
1146  arc -= 3;
1147  }
1148  }
1149 
1150 
1151  static int
1152  gray_move_to( const FT_Vector* to,
1153  gray_PWorker worker )
1154  {
1155  TPos x, y;
1156 
1157 
1158  /* record current cell, if any */
1159  gray_record_cell( RAS_VAR );
1160 
1161  /* start to a new position */
1162  x = UPSCALE( to->x );
1163  y = UPSCALE( to->y );
1164 
1165  gray_start_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
1166 
1167  worker->x = x;
1168  worker->y = y;
1169  return 0;
1170  }
1171 
1172 
1173  static int
1174  gray_line_to( const FT_Vector* to,
1175  gray_PWorker worker )
1176  {
1177  gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
1178  return 0;
1179  }
1180 
1181 
1182  static int
1183  gray_conic_to( const FT_Vector* control,
1184  const FT_Vector* to,
1185  gray_PWorker worker )
1186  {
1187  gray_render_conic( RAS_VAR_ control, to );
1188  return 0;
1189  }
1190 
1191 
1192  static int
1193  gray_cubic_to( const FT_Vector* control1,
1194  const FT_Vector* control2,
1195  const FT_Vector* to,
1196  gray_PWorker worker )
1197  {
1198  gray_render_cubic( RAS_VAR_ control1, control2, to );
1199  return 0;
1200  }
1201 
1202 
1203  static void
1204  gray_render_span( int y,
1205  int count,
1206  const FT_Span* spans,
1207  gray_PWorker worker )
1208  {
1209  unsigned char* p;
1210  FT_Bitmap* map = &worker->target;
1211 
1212 
1213  /* first of all, compute the scanline offset */
1214  p = (unsigned char*)map->buffer - y * map->pitch;
1215  if ( map->pitch >= 0 )
1216  p += (unsigned)( ( map->rows - 1 ) * map->pitch );
1217 
1218  for ( ; count > 0; count--, spans++ )
1219  {
1220  unsigned char coverage = spans->coverage;
1221 
1222 
1223  if ( coverage )
1224  {
1225  /* For small-spans it is faster to do it by ourselves than
1226  * calling `memset'. This is mainly due to the cost of the
1227  * function call.
1228  */
1229  if ( spans->len >= 8 )
1230  FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
1231  else
1232  {
1233  unsigned char* q = p + spans->x;
1234 
1235 
1236  switch ( spans->len )
1237  {
1238  case 7: *q++ = (unsigned char)coverage;
1239  case 6: *q++ = (unsigned char)coverage;
1240  case 5: *q++ = (unsigned char)coverage;
1241  case 4: *q++ = (unsigned char)coverage;
1242  case 3: *q++ = (unsigned char)coverage;
1243  case 2: *q++ = (unsigned char)coverage;
1244  case 1: *q = (unsigned char)coverage;
1245  default:
1246  ;
1247  }
1248  }
1249  }
1250  }
1251  }
1252 
1253 
1254  static void
1255  gray_hline( RAS_ARG_ TCoord x,
1256  TCoord y,
1257  TPos area,
1258  TCoord acount )
1259  {
1260  FT_Span* span;
1261  int count;
1262  int coverage;
1263 
1264 
1265  /* compute the coverage line's coverage, depending on the */
1266  /* outline fill rule */
1267  /* */
1268  /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
1269  /* */
1270  coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
1271  /* use range 0..256 */
1272  if ( coverage < 0 )
1273  coverage = -coverage;
1274 
1275  if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
1276  {
1277  coverage &= 511;
1278 
1279  if ( coverage > 256 )
1280  coverage = 512 - coverage;
1281  else if ( coverage == 256 )
1282  coverage = 255;
1283  }
1284  else
1285  {
1286  /* normal non-zero winding rule */
1287  if ( coverage >= 256 )
1288  coverage = 255;
1289  }
1290 
1291  y += (TCoord)ras.min_ey;
1292  x += (TCoord)ras.min_ex;
1293 
1294  /* FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
1295  if ( x >= 32767 )
1296  x = 32767;
1297 
1298  /* FT_Span.y is an integer, so limit our coordinates appropriately */
1299  if ( y >= FT_INT_MAX )
1300  y = FT_INT_MAX;
1301 
1302  if ( coverage )
1303  {
1304  /* see whether we can add this span to the current list */
1305  count = ras.num_gray_spans;
1306  span = ras.gray_spans + count - 1;
1307  if ( count > 0 &&
1308  ras.span_y == y &&
1309  (int)span->x + span->len == (int)x &&
1310  span->coverage == coverage )
1311  {
1312  span->len = (unsigned short)( span->len + acount );
1313  return;
1314  }
1315 
1316  if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
1317  {
1318  if ( ras.render_span && count > 0 )
1319  ras.render_span( ras.span_y, count, ras.gray_spans,
1320  ras.render_span_data );
1321 
1322 #ifdef FT_DEBUG_LEVEL_TRACE
1323 
1324  if ( count > 0 )
1325  {
1326  int n;
1327 
1328 
1329  FT_TRACE7(( "y = %3d ", ras.span_y ));
1330  span = ras.gray_spans;
1331  for ( n = 0; n < count; n++, span++ )
1332  FT_TRACE7(( "[%d..%d]:%02x ",
1333  span->x, span->x + span->len - 1, span->coverage ));
1334  FT_TRACE7(( "\n" ));
1335  }
1336 
1337 #endif /* FT_DEBUG_LEVEL_TRACE */
1338 
1339  ras.num_gray_spans = 0;
1340  ras.span_y = (int)y;
1341 
1342  count = 0;
1343  span = ras.gray_spans;
1344  }
1345  else
1346  span++;
1347 
1348  /* add a gray span to the current list */
1349  span->x = (short)x;
1350  span->len = (unsigned short)acount;
1351  span->coverage = (unsigned char)coverage;
1352 
1353  ras.num_gray_spans++;
1354  }
1355  }
1356 
1357 
1358 #ifdef FT_DEBUG_LEVEL_TRACE
1359 
1360  /* to be called while in the debugger -- */
1361  /* this function causes a compiler warning since it is unused otherwise */
1362  static void
1363  gray_dump_cells( RAS_ARG )
1364  {
1365  int yindex;
1366 
1367 
1368  for ( yindex = 0; yindex < ras.ycount; yindex++ )
1369  {
1370  PCell cell;
1371 
1372 
1373  printf( "%3d:", yindex );
1374 
1375  for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
1376  printf( " (%3ld, c:%4ld, a:%6d)", cell->x, cell->cover, cell->area );
1377  printf( "\n" );
1378  }
1379  }
1380 
1381 #endif /* FT_DEBUG_LEVEL_TRACE */
1382 
1383 
1384  static void
1385  gray_sweep( RAS_ARG_ const FT_Bitmap* target )
1386  {
1387  int yindex;
1388 
1389  FT_UNUSED( target );
1390 
1391 
1392  if ( ras.num_cells == 0 )
1393  return;
1394 
1395  ras.num_gray_spans = 0;
1396 
1397  FT_TRACE7(( "gray_sweep: start\n" ));
1398 
1399  for ( yindex = 0; yindex < ras.ycount; yindex++ )
1400  {
1401  PCell cell = ras.ycells[yindex];
1402  TCoord cover = 0;
1403  TCoord x = 0;
1404 
1405 
1406  for ( ; cell != NULL; cell = cell->next )
1407  {
1408  TPos area;
1409 
1410 
1411  if ( cell->x > x && cover != 0 )
1412  gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
1413  cell->x - x );
1414 
1415  cover += cell->cover;
1416  area = cover * ( ONE_PIXEL * 2 ) - cell->area;
1417 
1418  if ( area != 0 && cell->x >= 0 )
1419  gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
1420 
1421  x = cell->x + 1;
1422  }
1423 
1424  if ( cover != 0 )
1425  gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
1426  ras.count_ex - x );
1427  }
1428 
1429  if ( ras.render_span && ras.num_gray_spans > 0 )
1430  ras.render_span( ras.span_y, ras.num_gray_spans,
1431  ras.gray_spans, ras.render_span_data );
1432 
1433 #ifdef FT_DEBUG_LEVEL_TRACE
1434 
1435  if ( ras.num_gray_spans > 0 )
1436  {
1437  FT_Span* span;
1438  int n;
1439 
1440 
1441  FT_TRACE7(( "y = %3d ", ras.span_y ));
1442  span = ras.gray_spans;
1443  for ( n = 0; n < ras.num_gray_spans; n++, span++ )
1444  FT_TRACE7(( "[%d..%d]:%02x ",
1445  span->x, span->x + span->len - 1, span->coverage ));
1446  FT_TRACE7(( "\n" ));
1447  }
1448 
1449  FT_TRACE7(( "gray_sweep: end\n" ));
1450 
1451 #endif /* FT_DEBUG_LEVEL_TRACE */
1452 
1453  }
1454 
1455 
1456 #ifdef _STANDALONE_
1457 
1458  /*************************************************************************/
1459  /* */
1460  /* The following function should only compile in stand-alone mode, */
1461  /* i.e., when building this component without the rest of FreeType. */
1462  /* */
1463  /*************************************************************************/
1464 
1465  /*************************************************************************/
1466  /* */
1467  /* <Function> */
1468  /* FT_Outline_Decompose */
1469  /* */
1470  /* <Description> */
1471  /* Walk over an outline's structure to decompose it into individual */
1472  /* segments and Bézier arcs. This function is also able to emit */
1473  /* `move to' and `close to' operations to indicate the start and end */
1474  /* of new contours in the outline. */
1475  /* */
1476  /* <Input> */
1477  /* outline :: A pointer to the source target. */
1478  /* */
1479  /* func_interface :: A table of `emitters', i.e., function pointers */
1480  /* called during decomposition to indicate path */
1481  /* operations. */
1482  /* */
1483  /* <InOut> */
1484  /* user :: A typeless pointer which is passed to each */
1485  /* emitter during the decomposition. It can be */
1486  /* used to store the state during the */
1487  /* decomposition. */
1488  /* */
1489  /* <Return> */
1490  /* Error code. 0 means success. */
1491  /* */
1492  static int
1493  FT_Outline_Decompose( const FT_Outline* outline,
1494  const FT_Outline_Funcs* func_interface,
1495  void* user )
1496  {
1497 #undef SCALED
1498 #define SCALED( x ) ( ( (x) << shift ) - delta )
1499 
1500  FT_Vector v_last;
1501  FT_Vector v_control;
1502  FT_Vector v_start;
1503 
1504  FT_Vector* point;
1505  FT_Vector* limit;
1506  char* tags;
1507 
1508  int error;
1509 
1510  int n; /* index of contour in outline */
1511  int first; /* index of first point in contour */
1512  char tag; /* current point's state */
1513 
1514  int shift;
1515  TPos delta;
1516 
1517 
1518  if ( !outline || !func_interface )
1519  return FT_THROW( Invalid_Argument );
1520 
1521  shift = func_interface->shift;
1522  delta = func_interface->delta;
1523  first = 0;
1524 
1525  for ( n = 0; n < outline->n_contours; n++ )
1526  {
1527  int last; /* index of last point in contour */
1528 
1529 
1530  FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
1531 
1532  last = outline->contours[n];
1533  if ( last < 0 )
1534  goto Invalid_Outline;
1535  limit = outline->points + last;
1536 
1537  v_start = outline->points[first];
1538  v_start.x = SCALED( v_start.x );
1539  v_start.y = SCALED( v_start.y );
1540 
1541  v_last = outline->points[last];
1542  v_last.x = SCALED( v_last.x );
1543  v_last.y = SCALED( v_last.y );
1544 
1545  v_control = v_start;
1546 
1547  point = outline->points + first;
1548  tags = outline->tags + first;
1549  tag = FT_CURVE_TAG( tags[0] );
1550 
1551  /* A contour cannot start with a cubic control point! */
1552  if ( tag == FT_CURVE_TAG_CUBIC )
1553  goto Invalid_Outline;
1554 
1555  /* check first point to determine origin */
1556  if ( tag == FT_CURVE_TAG_CONIC )
1557  {
1558  /* first point is conic control. Yes, this happens. */
1559  if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
1560  {
1561  /* start at last point if it is on the curve */
1562  v_start = v_last;
1563  limit--;
1564  }
1565  else
1566  {
1567  /* if both first and last points are conic, */
1568  /* start at their middle and record its position */
1569  /* for closure */
1570  v_start.x = ( v_start.x + v_last.x ) / 2;
1571  v_start.y = ( v_start.y + v_last.y ) / 2;
1572 
1573  v_last = v_start;
1574  }
1575  point--;
1576  tags--;
1577  }
1578 
1579  FT_TRACE5(( " move to (%.2f, %.2f)\n",
1580  v_start.x / 64.0, v_start.y / 64.0 ));
1581  error = func_interface->move_to( &v_start, user );
1582  if ( error )
1583  goto Exit;
1584 
1585  while ( point < limit )
1586  {
1587  point++;
1588  tags++;
1589 
1590  tag = FT_CURVE_TAG( tags[0] );
1591  switch ( tag )
1592  {
1593  case FT_CURVE_TAG_ON: /* emit a single line_to */
1594  {
1595  FT_Vector vec;
1596 
1597 
1598  vec.x = SCALED( point->x );
1599  vec.y = SCALED( point->y );
1600 
1601  FT_TRACE5(( " line to (%.2f, %.2f)\n",
1602  vec.x / 64.0, vec.y / 64.0 ));
1603  error = func_interface->line_to( &vec, user );
1604  if ( error )
1605  goto Exit;
1606  continue;
1607  }
1608 
1609  case FT_CURVE_TAG_CONIC: /* consume conic arcs */
1610  v_control.x = SCALED( point->x );
1611  v_control.y = SCALED( point->y );
1612 
1613  Do_Conic:
1614  if ( point < limit )
1615  {
1616  FT_Vector vec;
1617  FT_Vector v_middle;
1618 
1619 
1620  point++;
1621  tags++;
1622  tag = FT_CURVE_TAG( tags[0] );
1623 
1624  vec.x = SCALED( point->x );
1625  vec.y = SCALED( point->y );
1626 
1627  if ( tag == FT_CURVE_TAG_ON )
1628  {
1629  FT_TRACE5(( " conic to (%.2f, %.2f)"
1630  " with control (%.2f, %.2f)\n",
1631  vec.x / 64.0, vec.y / 64.0,
1632  v_control.x / 64.0, v_control.y / 64.0 ));
1633  error = func_interface->conic_to( &v_control, &vec, user );
1634  if ( error )
1635  goto Exit;
1636  continue;
1637  }
1638 
1639  if ( tag != FT_CURVE_TAG_CONIC )
1640  goto Invalid_Outline;
1641 
1642  v_middle.x = ( v_control.x + vec.x ) / 2;
1643  v_middle.y = ( v_control.y + vec.y ) / 2;
1644 
1645  FT_TRACE5(( " conic to (%.2f, %.2f)"
1646  " with control (%.2f, %.2f)\n",
1647  v_middle.x / 64.0, v_middle.y / 64.0,
1648  v_control.x / 64.0, v_control.y / 64.0 ));
1649  error = func_interface->conic_to( &v_control, &v_middle, user );
1650  if ( error )
1651  goto Exit;
1652 
1653  v_control = vec;
1654  goto Do_Conic;
1655  }
1656 
1657  FT_TRACE5(( " conic to (%.2f, %.2f)"
1658  " with control (%.2f, %.2f)\n",
1659  v_start.x / 64.0, v_start.y / 64.0,
1660  v_control.x / 64.0, v_control.y / 64.0 ));
1661  error = func_interface->conic_to( &v_control, &v_start, user );
1662  goto Close;
1663 
1664  default: /* FT_CURVE_TAG_CUBIC */
1665  {
1666  FT_Vector vec1, vec2;
1667 
1668 
1669  if ( point + 1 > limit ||
1670  FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
1671  goto Invalid_Outline;
1672 
1673  point += 2;
1674  tags += 2;
1675 
1676  vec1.x = SCALED( point[-2].x );
1677  vec1.y = SCALED( point[-2].y );
1678 
1679  vec2.x = SCALED( point[-1].x );
1680  vec2.y = SCALED( point[-1].y );
1681 
1682  if ( point <= limit )
1683  {
1684  FT_Vector vec;
1685 
1686 
1687  vec.x = SCALED( point->x );
1688  vec.y = SCALED( point->y );
1689 
1690  FT_TRACE5(( " cubic to (%.2f, %.2f)"
1691  " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1692  vec.x / 64.0, vec.y / 64.0,
1693  vec1.x / 64.0, vec1.y / 64.0,
1694  vec2.x / 64.0, vec2.y / 64.0 ));
1695  error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
1696  if ( error )
1697  goto Exit;
1698  continue;
1699  }
1700 
1701  FT_TRACE5(( " cubic to (%.2f, %.2f)"
1702  " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1703  v_start.x / 64.0, v_start.y / 64.0,
1704  vec1.x / 64.0, vec1.y / 64.0,
1705  vec2.x / 64.0, vec2.y / 64.0 ));
1706  error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
1707  goto Close;
1708  }
1709  }
1710  }
1711 
1712  /* close the contour with a line segment */
1713  FT_TRACE5(( " line to (%.2f, %.2f)\n",
1714  v_start.x / 64.0, v_start.y / 64.0 ));
1715  error = func_interface->line_to( &v_start, user );
1716 
1717  Close:
1718  if ( error )
1719  goto Exit;
1720 
1721  first = last + 1;
1722  }
1723 
1724  FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
1725  return 0;
1726 
1727  Exit:
1728  FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
1729  return error;
1730 
1731  Invalid_Outline:
1732  return FT_THROW( Invalid_Outline );
1733  }
1734 
1735 #endif /* _STANDALONE_ */
1736 
1737 
1738  typedef struct gray_TBand_
1739  {
1740  TPos min, max;
1741 
1742  } gray_TBand;
1743 
1744  FT_DEFINE_OUTLINE_FUNCS(func_interface,
1745  (FT_Outline_MoveTo_Func) gray_move_to,
1746  (FT_Outline_LineTo_Func) gray_line_to,
1747  (FT_Outline_ConicTo_Func)gray_conic_to,
1748  (FT_Outline_CubicTo_Func)gray_cubic_to,
1749  0,
1750  0
1751  )
1752 
1753  static int
1754  gray_convert_glyph_inner( RAS_ARG )
1755  {
1756 
1757  volatile int error = 0;
1758 
1759 #ifdef FT_CONFIG_OPTION_PIC
1760  FT_Outline_Funcs func_interface;
1761  Init_Class_func_interface(&func_interface);
1762 #endif
1763 
1764  if ( ft_setjmp( ras.jump_buffer ) == 0 )
1765  {
1766  error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
1767  gray_record_cell( RAS_VAR );
1768  }
1769  else
1770  error = FT_THROW( Memory_Overflow );
1771 
1772  return error;
1773  }
1774 
1775 
1776  static int
1777  gray_convert_glyph( RAS_ARG )
1778  {
1779  gray_TBand bands[40];
1780  gray_TBand* volatile band;
1781  int volatile n, num_bands;
1782  TPos volatile min, max, max_y;
1783  FT_BBox* clip;
1784 
1785 
1786  /* Set up state in the raster object */
1787  gray_compute_cbox( RAS_VAR );
1788 
1789  /* clip to target bitmap, exit if nothing to do */
1790  clip = &ras.clip_box;
1791 
1792  if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
1793  ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
1794  return 0;
1795 
1796  if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
1797  if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
1798 
1799  if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
1800  if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
1801 
1802  ras.count_ex = ras.max_ex - ras.min_ex;
1803  ras.count_ey = ras.max_ey - ras.min_ey;
1804 
1805  /* set up vertical bands */
1806  num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
1807  if ( num_bands == 0 )
1808  num_bands = 1;
1809  if ( num_bands >= 39 )
1810  num_bands = 39;
1811 
1812  ras.band_shoot = 0;
1813 
1814  min = ras.min_ey;
1815  max_y = ras.max_ey;
1816 
1817  for ( n = 0; n < num_bands; n++, min = max )
1818  {
1819  max = min + ras.band_size;
1820  if ( n == num_bands - 1 || max > max_y )
1821  max = max_y;
1822 
1823  bands[0].min = min;
1824  bands[0].max = max;
1825  band = bands;
1826 
1827  while ( band >= bands )
1828  {
1829  TPos bottom, top, middle;
1830  int error;
1831 
1832  {
1833  PCell cells_max;
1834  int yindex;
1835  long cell_start, cell_end, cell_mod;
1836 
1837 
1838  ras.ycells = (PCell*)ras.buffer;
1839  ras.ycount = band->max - band->min;
1840 
1841  cell_start = sizeof ( PCell ) * ras.ycount;
1842  cell_mod = cell_start % sizeof ( TCell );
1843  if ( cell_mod > 0 )
1844  cell_start += sizeof ( TCell ) - cell_mod;
1845 
1846  cell_end = ras.buffer_size;
1847  cell_end -= cell_end % sizeof ( TCell );
1848 
1849  cells_max = (PCell)( (char*)ras.buffer + cell_end );
1850  ras.cells = (PCell)( (char*)ras.buffer + cell_start );
1851  if ( ras.cells >= cells_max )
1852  goto ReduceBands;
1853 
1854  ras.max_cells = cells_max - ras.cells;
1855  if ( ras.max_cells < 2 )
1856  goto ReduceBands;
1857 
1858  for ( yindex = 0; yindex < ras.ycount; yindex++ )
1859  ras.ycells[yindex] = NULL;
1860  }
1861 
1862  ras.num_cells = 0;
1863  ras.invalid = 1;
1864  ras.min_ey = band->min;
1865  ras.max_ey = band->max;
1866  ras.count_ey = band->max - band->min;
1867 
1868  error = gray_convert_glyph_inner( RAS_VAR );
1869 
1870  if ( !error )
1871  {
1872  gray_sweep( RAS_VAR_ &ras.target );
1873  band--;
1874  continue;
1875  }
1876  else if ( error != ErrRaster_Memory_Overflow )
1877  return 1;
1878 
1879  ReduceBands:
1880  /* render pool overflow; we will reduce the render band by half */
1881  bottom = band->min;
1882  top = band->max;
1883  middle = bottom + ( ( top - bottom ) >> 1 );
1884 
1885  /* This is too complex for a single scanline; there must */
1886  /* be some problems. */
1887  if ( middle == bottom )
1888  {
1889 #ifdef FT_DEBUG_LEVEL_TRACE
1890  FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
1891 #endif
1892  return 1;
1893  }
1894 
1895  if ( bottom-top >= ras.band_size )
1896  ras.band_shoot++;
1897 
1898  band[1].min = bottom;
1899  band[1].max = middle;
1900  band[0].min = middle;
1901  band[0].max = top;
1902  band++;
1903  }
1904  }
1905 
1906  if ( ras.band_shoot > 8 && ras.band_size > 16 )
1907  ras.band_size = ras.band_size / 2;
1908 
1909  return 0;
1910  }
1911 
1912 
1913  static int
1914  gray_raster_render( gray_PRaster raster,
1915  const FT_Raster_Params* params )
1916  {
1917  const FT_Outline* outline = (const FT_Outline*)params->source;
1918  const FT_Bitmap* target_map = params->target;
1919  gray_PWorker worker;
1920 
1921 
1922  if ( !raster || !raster->buffer || !raster->buffer_size )
1923  return FT_THROW( Invalid_Argument );
1924 
1925  if ( !outline )
1926  return FT_THROW( Invalid_Outline );
1927 
1928  /* return immediately if the outline is empty */
1929  if ( outline->n_points == 0 || outline->n_contours <= 0 )
1930  return 0;
1931 
1932  if ( !outline->contours || !outline->points )
1933  return FT_THROW( Invalid_Outline );
1934 
1935  if ( outline->n_points !=
1936  outline->contours[outline->n_contours - 1] + 1 )
1937  return FT_THROW( Invalid_Outline );
1938 
1939  worker = raster->worker;
1940 
1941  /* if direct mode is not set, we must have a target bitmap */
1942  if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
1943  {
1944  if ( !target_map )
1945  return FT_THROW( Invalid_Argument );
1946 
1947  /* nothing to do */
1948  if ( !target_map->width || !target_map->rows )
1949  return 0;
1950 
1951  if ( !target_map->buffer )
1952  return FT_THROW( Invalid_Argument );
1953  }
1954 
1955  /* this version does not support monochrome rendering */
1956  if ( !( params->flags & FT_RASTER_FLAG_AA ) )
1957  return FT_THROW( Invalid_Mode );
1958 
1959  /* compute clipping box */
1960  if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
1961  {
1962  /* compute clip box from target pixmap */
1963  ras.clip_box.xMin = 0;
1964  ras.clip_box.yMin = 0;
1965  ras.clip_box.xMax = target_map->width;
1966  ras.clip_box.yMax = target_map->rows;
1967  }
1968  else if ( params->flags & FT_RASTER_FLAG_CLIP )
1969  ras.clip_box = params->clip_box;
1970  else
1971  {
1972  ras.clip_box.xMin = -32768L;
1973  ras.clip_box.yMin = -32768L;
1974  ras.clip_box.xMax = 32767L;
1975  ras.clip_box.yMax = 32767L;
1976  }
1977 
1978  gray_init_cells( RAS_VAR_ raster->buffer, raster->buffer_size );
1979 
1980  ras.outline = *outline;
1981  ras.num_cells = 0;
1982  ras.invalid = 1;
1983  ras.band_size = raster->band_size;
1984  ras.num_gray_spans = 0;
1985 
1986  if ( params->flags & FT_RASTER_FLAG_DIRECT )
1987  {
1988  ras.render_span = (FT_Raster_Span_Func)params->gray_spans;
1989  ras.render_span_data = params->user;
1990  }
1991  else
1992  {
1993  ras.target = *target_map;
1994  ras.render_span = (FT_Raster_Span_Func)gray_render_span;
1995  ras.render_span_data = &ras;
1996  }
1997 
1998  return gray_convert_glyph( RAS_VAR );
1999  }
2000 
2001 
2002  /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
2003  /**** a static object. *****/
2004 
2005 #ifdef _STANDALONE_
2006 
2007  static int
2008  gray_raster_new( void* memory,
2009  FT_Raster* araster )
2010  {
2011  static gray_TRaster the_raster;
2012 
2013  FT_UNUSED( memory );
2014 
2015 
2016  *araster = (FT_Raster)&the_raster;
2017  FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
2018 
2019  return 0;
2020  }
2021 
2022 
2023  static void
2024  gray_raster_done( FT_Raster raster )
2025  {
2026  /* nothing */
2027  FT_UNUSED( raster );
2028  }
2029 
2030 #else /* !_STANDALONE_ */
2031 
2032  static int
2033  gray_raster_new( FT_Memory memory,
2034  FT_Raster* araster )
2035  {
2036  FT_Error error;
2037  gray_PRaster raster = NULL;
2038 
2039 
2040  *araster = 0;
2041  if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
2042  {
2043  raster->memory = memory;
2044  *araster = (FT_Raster)raster;
2045  }
2046 
2047  return error;
2048  }
2049 
2050 
2051  static void
2052  gray_raster_done( FT_Raster raster )
2053  {
2054  FT_Memory memory = (FT_Memory)((gray_PRaster)raster)->memory;
2055 
2056 
2057  FT_FREE( raster );
2058  }
2059 
2060 #endif /* !_STANDALONE_ */
2061 
2062 
2063  static void
2064  gray_raster_reset( FT_Raster raster,
2065  char* pool_base,
2066  long pool_size )
2067  {
2068  gray_PRaster rast = (gray_PRaster)raster;
2069 
2070 
2071  if ( raster )
2072  {
2073  if ( pool_base && pool_size >= (long)sizeof ( gray_TWorker ) + 2048 )
2074  {
2075  gray_PWorker worker = (gray_PWorker)pool_base;
2076 
2077 
2078  rast->worker = worker;
2079  rast->buffer = pool_base +
2080  ( ( sizeof ( gray_TWorker ) +
2081  sizeof ( TCell ) - 1 ) &
2082  ~( sizeof ( TCell ) - 1 ) );
2083  rast->buffer_size = (long)( ( pool_base + pool_size ) -
2084  (char*)rast->buffer ) &
2085  ~( sizeof ( TCell ) - 1 );
2086  rast->band_size = (int)( rast->buffer_size /
2087  ( sizeof ( TCell ) * 8 ) );
2088  }
2089  else
2090  {
2091  rast->buffer = NULL;
2092  rast->buffer_size = 0;
2093  rast->worker = NULL;
2094  }
2095  }
2096  }
2097 
2098 
2099  FT_DEFINE_RASTER_FUNCS(ft_grays_raster,
2101 
2102  (FT_Raster_New_Func) gray_raster_new,
2103  (FT_Raster_Reset_Func) gray_raster_reset,
2105  (FT_Raster_Render_Func) gray_raster_render,
2106  (FT_Raster_Done_Func) gray_raster_done
2107  )
2108 
2109 
2110 /* END */
2111 
2112 
2113 /* Local Variables: */
2114 /* coding: utf-8 */
2115 /* End: */
#define ft_jmp_buf
Definition: ftstdlib.h:157
#define FT_ALLOC(ptr, size)
Definition: ftmemory.h:260
FT_Outline_LineToFunc line_to
Definition: ftimage.h:694
int FT_Error
Definition: fttypes.h:296
struct gray_TWorker_ * gray_PWorker
ft_ptrdiff_t FT_PtrDist
Definition: fttypes.h:333
#define FT_Raster_Done_Func
Definition: ftimage.h:1164
FT_DEFINE_OUTLINE_FUNCS(func_interface,(FT_Outline_MoveTo_Func) gray_move_to,(FT_Outline_LineTo_Func) gray_line_to,(FT_Outline_ConicTo_Func) gray_conic_to,(FT_Outline_CubicTo_Func) gray_cubic_to, 0, 0) static int gray_convert_glyph_inner(RAS_ARG)
Definition: ftgrays.c:1744
GLboolean GLboolean GLboolean GLboolean a
GLfloat GLfloat p
fvec2 vec2
Defined as: &#39;typedef fvec2 vec2&#39;. See also VL_PIPELINE_PRECISION.
Definition: Vector2.hpp:299
#define SCALED(x)
struct FT_RasterRec_ * FT_Raster
Definition: ftimage.h:862
#define FT_CURVE_TAG_CUBIC
Definition: ftimage.h:518
#define NULL
Definition: ftobjs.h:61
GLint GLint GLint GLint GLint GLint y
#define FT_Raster_Set_Mode_Func
Definition: ftimage.h:1225
#define FT_Raster_New_Func
Definition: ftimage.h:1147
short n_contours
Definition: ftimage.h:385
GLdouble GLdouble GLdouble GLdouble q
int rows
Definition: ftimage.h:312
sizeof(AF_ModuleRec)
#define FT_ABS(a)
Definition: ftobjs.h:73
#define PIXEL_BITS
Definition: ftgrays.c:289
#define ONE_PIXEL
Definition: ftgrays.c:296
return FT_THROW(Missing_Property)
short * contours
Definition: ftimage.h:390
#define FT_UNUSED(arg)
Definition: ftconfig.h:76
unsigned char * buffer
Definition: ftimage.h:315
char * tags
Definition: ftimage.h:389
#define FT_MEM_SET(d, s, c)
Definition: ftgrays.c:256
const FT_Bitmap * target
Definition: ftimage.h:1106
long TPos
Definition: ftgrays.c:323
#define FT_RASTER_FLAG_AA
Definition: ftimage.h:1043
#define RAS_VAR_
Definition: ftgrays.c:276
#define ft_longjmp
Definition: ftstdlib.h:161
GLenum GLenum GLvoid GLvoid GLvoid * span
GLint GLint GLint GLint GLint x
int pitch
Definition: ftimage.h:314
#define FT_Outline_ConicTo_Func
Definition: ftimage.h:618
GLboolean GLboolean GLboolean b
struct TCell_ * PCell
Definition: ftgrays.c:349
struct gray_TWorker_ gray_TWorker
#define FT_RASTER_FLAG_CLIP
Definition: ftimage.h:1045
#define FT_OUTLINE_EVEN_ODD_FILL
Definition: ftimage.h:476
GLint GLint bottom
#define FT_Outline_MoveTo_Func
Definition: ftimage.h:559
#define FT_FREE(ptr)
Definition: ftmemory.h:286
#define RAS_ARG
Definition: ftgrays.c:272
FT_Pos yMax
Definition: ftimage.h:119
FT_Pos xMin
Definition: ftimage.h:118
#define FT_Raster_Render_Func
Definition: ftimage.h:1266
struct gray_TBand_ gray_TBand
#define UPSCALE(x)
Definition: ftgrays.c:305
GLint level
FT_Outline_CubicToFunc cubic_to
Definition: ftimage.h:696
FT_Error error
Definition: cffdrivr.c:411
FT_Pos x
Definition: ftimage.h:77
float min(float a, float b)
Definition: Vector2.hpp:307
#define ErrRaster_Memory_Overflow
Definition: ftgrays.c:249
FT_Pos y
Definition: ftimage.h:78
typedef long(ZCALLBACK *tell_file_func) OF((voidpf opaque
GLdouble n
FT_Outline_MoveToFunc move_to
Definition: ftimage.h:693
T mod(T a, T b)
Definition: glsl_math.hpp:929
GLuint buffer
const GLubyte * c
FT_SpanFunc gray_spans
Definition: ftimage.h:1109
#define ft_setjmp(b)
Definition: ftstdlib.h:162
#define FT_TRACE7(varformat)
Definition: ftdebug.h:164
#define SUBPIXELS(x)
Definition: ftgrays.c:299
const GLint * first
unsigned short len
Definition: ftimage.h:894
#define FT_Outline_LineTo_Func
Definition: ftimage.h:586
FT_BEGIN_HEADER FT_Outline_Decompose(FT_Outline *outline, const FT_Outline_Funcs *func_interface, void *user)
Definition: ftoutln.c:51
FT_Vector * vec
Definition: ftbbox.c:566
#define RAS_ARG_
Definition: ftgrays.c:273
FT_Pos xMax
Definition: ftimage.h:119
short n_points
Definition: ftimage.h:386
struct gray_TRaster_ * gray_PRaster
typedefFT_BEGIN_HEADER struct FT_MemoryRec_ * FT_Memory
Definition: ftsystem.h:66
int TArea
Definition: ftgrays.c:339
local int max
Definition: enough.c:170
#define TRUNC(x)
Definition: ftgrays.c:298
#define FT_RASTER_FLAG_DIRECT
Definition: ftimage.h:1044
unsigned char coverage
Definition: ftimage.h:895
if(!abbox) return FT_THROW(Invalid_Argument)
#define FT_Raster_Reset_Func
Definition: ftimage.h:1199
typedef int
Definition: png.h:978
GLenum const GLfloat * params
FT_BBox clip_box
Definition: ftimage.h:1114
GLdouble GLdouble GLdouble GLdouble top
GLsizei levels
#define FT_MAX_GRAY_SPANS
Definition: ftgrays.c:346
#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, raster_new_, raster_reset_, raster_set_mode_, raster_render_, raster_done_)
Definition: ftobjs.h:1054
png_infop png_bytep png_size_t buffer_size
Definition: png.h:1887
GLenum target
struct TCell_ TCell
#define FT_TRACE5(varformat)
Definition: ftdebug.h:162
GLdouble s
long TCoord
Definition: ftgrays.c:322
#define FT_Outline_CubicTo_Func
Definition: ftimage.h:651
GLuint GLuint GLsizei count
#define FT_CURVE_TAG_ON
Definition: ftimage.h:516
#define FT_CURVE_TAG_CONIC
Definition: ftimage.h:517
#define FT_INT_MAX
Definition: ftstdlib.h:64
FT_Outline_ConicToFunc conic_to
Definition: ftimage.h:695
#define FT_Raster_Span_Func
Definition: ftimage.h:942
#define FT_CURVE_TAG(flag)
Definition: ftimage.h:514
const void * source
Definition: ftimage.h:1107
struct gray_TRaster_ gray_TRaster
FT_Pos yMin
Definition: ftimage.h:118
#define ras
Definition: ftgrays.c:410
FT_Vector * points
Definition: ftimage.h:388
FT_Module_Constructor FT_GLYPH_FORMAT_OUTLINE
Definition: ftrend1.c:284
GLint limit
short x
Definition: ftimage.h:893
#define RAS_VAR
Definition: ftgrays.c:275
#define FT_MEM_ZERO(dest, count)
Definition: ftgrays.c:260